翻訳と辞書
Words near each other
・ Stronghold (Magnum album)
・ Stronghold (novel)
・ Stronghold (Summoning album)
・ Stronghold 2
・ Stronghold 3
・ Stronghold Builder's Guidebook
・ Strong key
・ Strong Law of Small Numbers
・ Strong link weak link
・ Strong Love Affair
・ Strong measure zero set
・ Strong Medicine
・ Strong Medicine (novel)
・ Strong Medicine (Season 1)
・ Strong Memorial Hospital
Strong monad
・ Strong Motion
・ Strong Nash equilibrium
・ Strong Notrump After Passing (SNAP)
・ Strong noun
・ Strong NP-completeness
・ Strong objectivity
・ Strong on Oaks, Strong on the Causes of Oaks
・ Strong operator topology
・ Strong orientation
・ Strong partition cardinal
・ Strong pass
・ Strong Peak
・ Strong perfect graph theorem
・ Strong Persuader


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Strong monad : ウィキペディア英語版
Strong monad
In category theory, a strong monad over a monoidal category (''C'', ⊗, I) is a monad (''T'', η, μ) together with a natural transformation ''t''''A,B'' : ''A'' ⊗ ''TB'' → ''T''(''A'' ⊗ ''B''), called (''tensorial'') ''strength'', such that the diagrams
:, ,
:,
and
:
commute for every object ''A'', ''B'' and ''C'' (see Definition 3.2 in ).
If the monoidal category (''C'', ⊗, I) is closed then a strong monad is the same thing as a ''C''-enriched monad.
== Commutative strong monads ==

For every strong monad ''T'' on a symmetric monoidal category, a ''costrength'' natural transformation can be defined by
:t'_=T(\gamma_)\circ t_\circ\gamma_ : TA\otimes B\to T(A\otimes B).
A strong monad ''T'' is said to be commutative when the diagram
:
commutes for all objects A and B.
One interesting fact about commutative strong monads is that they are "the same as" symmetric monoidal monads. More explicitly,
* a commutative strong monad (T,\eta,\mu,t) defines a symmetric monoidal monad (T,\eta,\mu,m) by
:m_=\mu_\circ Tt'_\circ t_:TA\otimes TB\to T(A\otimes B)
* and conversely a symmetric monoidal monad (T,\eta,\mu,m) defines a commutative strong monad (T,\eta,\mu,t) by
:t_=m_\circ(\eta_A\otimes 1_):A\otimes TB\to T(A\otimes B)
and the conversion between one and the other presentation is bijective.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Strong monad」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.